Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach

نویسندگان

  • Surya Tokdar
  • Joseph B Kadane
چکیده

We introduce a semi-parametric Bayesian framework for a simultaneous analysis of linear quantile regression models. A simultaneous analysis is essential to attain the true potential of the quantile regression framework, but is computationally challenging due to the associated monotonicity constraint on the quantile curves. For a univariate covariate, we present a simpler equivalent characterization of the monotonicity constraint through an interpolation of two monotone curves. The resulting formulation leads to a tractable likelihood function and is embedded within a Bayesian framework where the two monotone curves are modeled via logistic transformations of a smooth Gaussian process. A multivariate extension is proposed by combining the full support univariate model with a linear projection of the predictors. The resulting single-index model remains easy to fit and provides substantial and measurable improvement over the first order linear heteroscedastic model. Two illustrative applications of the proposed method are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian quantile regression for censored data.

In this paper we propose a semiparametric quantile regression model for censored survival data. Quantile regression permits covariates to affect survival differently at different stages in the follow-up period, thus providing a comprehensive study of the survival distribution. We take a semiparametric approach, representing the quantile process as a linear combination of basis functions. The ba...

متن کامل

Bayesian semiparametric additive quantile regression

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...

متن کامل

Editorial for the special issue on quantile regression and semiparametric methods

Quantile regression and other semiparametric models have been widely recognized as important data analysis tools in statistics and econometrics. Thesemethods donot rely strictly onparametric likelihoodbut avoid the curse of dimensionality associated with many nonparametric models. The journal Computational Statistics and Data Analysis regularly publishes papers on these semiparametric methods, ...

متن کامل

Joint Quantile Regression through Bayesian Semiparametrics

We introduce a Bayesian semiparametric methodology for joint quantile regression with linearity and piecewise linearity constraints. We develop a probability model for all quantile curves in a continuum that define a coherent sampling distribution of the response variable. We provide a detailed illustration of model fitting and inference by analyzing wind speed trends of tropical cyclones in th...

متن کامل

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010